
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

Improving program productivity, performance and portability through a high
level language for graphics and game development

James R. Geraci Erek R. Speed
Square Enix Research Center∗

1 Introduction

Our work focuses on the area of using a high level language to im-
prove program productivity, performance and portability.In gen-
eral, this has been an area of intense research. There are a number
of previous efforts including ZPL [Chamberlain and et al 2004],
X10/Fortress/Chapel from IBM/SUN/Cray [Weiland 2007], Intel’s
CT/RapidMind [McCool 2006] and parallel VSIPL++ [Lebak and
et al 2005] to name a few. However, while these languages do great
things in simplifying parallel implementation of code, extensions
beyond that are limited. The primary exception to this is VSIPL++
which implements several high level functions useful to thesig-
nal processing community. While most of these languages canbe
used to implement graphics or game related algorithms if necessary,
none of them attempt to provide a platform that makes such devel-
opment particularly easy. On the other hand, high level engines
such as Renderman and Unreal provide the wanted abstractions but
with little or no guarantees about extensibility, portability, or par-
allel performance. Our research focuses on adapting the parallel
VSIPL++ API from the signal processing community to the graph-
ics and game development environment.

The choice of parallel VSIPL++ as the starting point bears some
discussion. Our goal was to have the base language provide as
much of the needed parallel framework as possible while being easy
to extend into our goal domain. VISPL++’s map construct fillsthe
first requirement, though it is unclear if it does it best. Forinstance,
Intel’s CT/Rapidmind abstracts away even this map construct by as-
signing data to computing units dynamically with an efficient run-
time system. However, for a game development environment, such
an add-on would be a large step away from current programming
paradigms and possibly a hindrance to the various closed systems
in the gaming world. Moreover, because VSIPL++ is an open API
with capable extensible implementations, something none of the
other options can provide, it is a ready target for language research
and development. VSIPL++’s implementation of a similar level of
functionality in its primary domain provides an excellent example
of what one might expect while building a domain specific exten-
sion of VSPIL++.

2 Contributions

We contribute three main results: we extended the VSIPL++ API
with a ray/triangle intersection function, made data maps distribute
across an architecture’s compute units instead of just its processors
as is presently done, and demonstrate the performance, productivity
and portability of the API by implementing a Monte Carlo path
tracer that can run on any one of 4 different platforms without any
code modification.

First, we extended the VSIPL++ API with a ray/triangle intersec-
tion function. This is significant as it is the basis functionfor
many algorithms in rendering and conceptually similar to the ob-
ject/object intersections used in physics. Thus, by showing we
can implement a high level cross platform API for rendering,we
have also shown that it is theoretically possible to do the same for

∗e-mail:geraci,speed@square-enix.com

physics. Our function runs on parallel x86 processors (or Pow-
erPC processors), the Cell Broadband Engine (PS3) across multi-
ple Synergistic Processor Elements, or on a GPU using the stream-
ing/CUDA units of the GPU.

Next, we modified how parallel VSIPL++ maps data. Presently,
parallel VSIPL++ maps data across system processors. This hides
system coprocessors from developers. We modify VSIPL++ maps
to run across a set of homogeneous computational units. These
computational units could be from any number of different com-
putational architecture families. For example, they couldbe x86
processors, the streaming units on a Graphics Processing Unit, or
the Synergistic Processor Elements on a Cell Broadband Engine.

We demonstrate the usefulness of our API by implementing a
Monte Carlo path tracer in VSIPL++ for games and run it on 4
extremely different hardware architectures without changing any
code. We present performance results for each platform and dis-
cuss implementation difficulties we encountered when writing at
such a high level.

3 Conclusions

We conclude our presentation with a discussion of future work.
We’re primarily left with one question: What is the optimal set
of high level functions for the domain? Each added function is
an opportunity for both usefulness and bloat that harms usability.
We discuss which functions we think should be included and solicit
feedback.

References

CHAMBERLAIN , B. L., AND ET AL . 2004. The high-level parallel
language ZPL improves productivity and performance. Proceed-
ings of the IEEE International Workshop on Productivity and
Performance in High-End Computing.

LEBAK , J., AND ET AL . 2005. Parallel VSIPL++: An open stan-
dard software library for high-performance parallel signal pro-
cessing.Proceedings of the IEEE 93, 2 (February), 313–330.

MCCOOL, M. D. 2006. Data-parallel programming on the Cell BE
and the GPU using the RapidMind development platform. GSPx
Multicore Applications Conference, Santa Clara.

WEILAND , M. 2007. Chapel, Fortress and X10: novel languages
for HPC. Tech. rep., EPCC, The University of Edinburgh, Octo-
ber.


